U
    GvfOI                     @   s  d Z ddgZddlZddlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZmZ ddlmZmZmZmZmZ dd	lmZ dd
lmZmZ dZeeejZdd Z ddddddddddddddedfddZ!ddddddddeddfddZ"dd Z#dd Z$dS )a  
This module implements the Sequential Least Squares Programming optimization
algorithm (SLSQP), originally developed by Dieter Kraft.
See http://www.netlib.org/toms/733

Functions
---------
.. autosummary::
   :toctree: generated/

    approx_jacobian
    fmin_slsqp

approx_jacobian
fmin_slsqp    N)slsqp)zerosarraylinalgappendasfarrayconcatenatefinfosqrtvstackisfinite
atleast_1d   )OptimizeResult_check_unknown_options_prepare_scalar_function_clip_x_for_func_check_clip_x)approx_derivative)old_bound_to_new_arr_to_scalarzrestructuredtext enc                 G   s   t || d||d}t|S )a  
    Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x,*args)
        The vector-valued function.
    epsilon : float
        The perturbation used to determine the partial derivatives.
    args : sequence
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    2-point)methodabs_stepargs)r   npZ
atleast_2d)xfuncepsilonr   jac r"   </tmp/pip-unpacked-wheel-96ln3f52/scipy/optimize/_slsqp_py.pyr   "   s    
r"   d   gư>c                    s   |dk	r|}||||dk||d}d}|t  fdd|D 7 }|t  fdd|D 7 }|rr|d|| d	f7 }|r|d
||	 d	f7 }t| | f|||d|}|r|d |d |d |d |d fS |d S dS )a/  
    Minimize a function using Sequential Least Squares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.  Must return a scalar.
    x0 : 1-D ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list, optional
        A list of functions of length n such that
        eqcons[j](x,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args), optional
        Returns a 1-D array in which each element must equal 0.0 in a
        successfully optimized problem. If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list, optional
        A list of functions of length n such that
        ieqcons[j](x,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x,*args), optional
        Returns a 1-D ndarray in which each element must be greater or
        equal to 0.0 in a successfully optimized problem. If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list, optional
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
        Infinite values will be interpreted as large floating values.
    fprime : callable `f(x,*args)`, optional
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of equality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of inequality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence, optional
        Additional arguments passed to func and fprime.
    iter : int, optional
        The maximum number of iterations.
    acc : float, optional
        Requested accuracy.
    iprint : int, optional
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    disp : int, optional
        Overrides the iprint interface (preferred).
    full_output : bool, optional
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float, optional
        The step size for finite-difference derivative estimates.
    callback : callable, optional
        Called after each iteration, as ``callback(x)``, where ``x`` is the
        current parameter vector.

    Returns
    -------
    out : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'SLSQP' `method` in particular.

    Notes
    -----
    Exit modes are defined as follows ::

        -1 : Gradient evaluation required (g & a)
         0 : Optimization terminated successfully
         1 : Function evaluation required (f & c)
         2 : More equality constraints than independent variables
         3 : More than 3*n iterations in LSQ subproblem
         4 : Inequality constraints incompatible
         5 : Singular matrix E in LSQ subproblem
         6 : Singular matrix C in LSQ subproblem
         7 : Rank-deficient equality constraint subproblem HFTI
         8 : Positive directional derivative for linesearch
         9 : Iteration limit reached

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    Nr   )maxiterftoliprintdispepscallbackr"   c                 3   s   | ]}d | dV  qdS )eqtypefunr   Nr"   .0cr   r"   r#   	<genexpr>   s     zfmin_slsqp.<locals>.<genexpr>c                 3   s   | ]}d | dV  qdS )ineqr,   Nr"   r/   r2   r"   r#   r3      s     r+   )r-   r.   r!   r   r4   )r!   boundsconstraintsr   r.   nitstatusmessage)tuple_minimize_slsqp)r   x0ZeqconsZf_eqconsZieqconsZ	f_ieqconsr5   ZfprimeZfprime_eqconsZfprime_ieqconsr   iteraccr'   r(   Zfull_outputr    r*   optsconsresr"   r2   r#   r   D   s8    p

"Fc           C   !      s  t | |d }|}|
 |	s d}t| |dks@t|dkrPtj tjfnt|td d t|t	r~|f}ddd}t
|D ]*\}}z|d  }W n tk
r } ztd| |W 5 d}~X Y nt tk
r } ztd|W 5 d}~X Y nH tk
r2 } ztd	|W 5 d}~X Y nX |dkrNtd
|d  d|krdtd| |d}|dkr fdd}||d }||  |d ||dddf7  < qdddddddddddd}tttfdd|d  D }tttfd!d|d" D }|| }td|g }t}|d }|| | | }d#| | |d  || d |d$   d$|  || ||   d$|  | |d | d$  d$|  d#|  d#|  d }|} t|}!t| }"|dkst|dkr,tj|td%}#tj|td%}$|#tj |$tj ntd&d |D t}%|%jd |krXtd'tjd(d)& |%dddf |%dddf k}&W 5 Q R X |& rtd*d+d,d- |&D  |%dddf |%dddf  }#}$t|% }'tj|#|'dddf < tj|$|'dddf < t | ||
d.}(t!|(j"})t!|(j#}*tdt$}+t|t}t|t$},d}-tdt}.tdt}/tdt}0tdt}1tdt}2tdt}3tdt}4tdt}5tdt}6tdt}7tdt$}8tdt$}9tdt$}:tdt$};tdt$}<tdt$}tdt$}=tdt$}>|d$kr(t%d/d0  |)}?t&|*d1}@t'|}At(||||||}Bt)|||#|$|?|A|@|B||,|+|!|"|.|/|0|1|2|3|4|5|6|7|8|9|:|;|<||=|>  |+dkr|)}?t'|}A|+d2krt&|*d1}@t(||||||}B|,|-kr2|dk	r|t* |d$kr2t%d3|,|(j+|?t,-|@f  t.|+dkrDqPt$|,}-q\|dkrt%|t$|+ d4 t/|+ d5  t%d6|? t%d7|, t%d8|(j+ t%d9|(j0 t1|?|@dd2 t$|,|(j+|(j0t$|+|t$|+ |+dkd:	S );a  
    Minimize a scalar function of one or more variables using Sequential
    Least Squares Programming (SLSQP).

    Options
    -------
    ftol : float
        Precision goal for the value of f in the stopping criterion.
    eps : float
        Step size used for numerical approximation of the Jacobian.
    disp : bool
        Set to True to print convergence messages. If False,
        `verbosity` is ignored and set to 0.
    maxiter : int
        Maximum number of iterations.
    finite_diff_rel_step : None or array_like, optional
        If `jac in ['2-point', '3-point', 'cs']` the relative step size to
        use for numerical approximation of `jac`. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``method='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    r   r   Nr"   )r+   r4   r-   z"Constraint %d has no type defined.z/Constraints must be defined using a dictionary.z#Constraint's type must be a string.zUnknown constraint type '%s'.r.   z&Constraint %d has no function defined.r!   c                    s    fdd}|S )Nc                    s>   t | } dkr&t| |dS t| d |dS d S )N)r   z3-pointcs)r   r   Zrel_stepr5   r   )r   r   r   r5   )r   r   )r   r   )r    finite_diff_rel_stepr.   r!   
new_boundsr"   r#   cjac%  s    

 z3_minimize_slsqp.<locals>.cjac_factory.<locals>.cjacr"   )r.   rE   )r    rC   r!   rD   )r.   r#   cjac_factory$  s    z%_minimize_slsqp.<locals>.cjac_factoryr   )r.   r!   r   z$Gradient evaluation required (g & a)z$Optimization terminated successfullyz$Function evaluation required (f & c)z4More equality constraints than independent variablesz*More than 3*n iterations in LSQ subproblemz#Inequality constraints incompatiblez#Singular matrix E in LSQ subproblemz#Singular matrix C in LSQ subproblemz2Rank-deficient equality constraint subproblem HFTIz.Positive directional derivative for linesearchzIteration limit reached)r   r                        	   c                    s&   g | ]}t |d   f|d  qS r.   r   r   r/   r   r"   r#   
<listcomp>G  s   z#_minimize_slsqp.<locals>.<listcomp>r+   c                    s&   g | ]}t |d   f|d  qS rP   rQ   r/   rR   r"   r#   rS   I  s   r4   rI   rH   )Zdtypec                 S   s    g | ]\}}t |t |fqS r"   )r   )r0   lur"   r"   r#   rS   b  s   zDSLSQP Error: the length of bounds is not compatible with that of x0.ignore)invalidz"SLSQP Error: lb > ub in bounds %s.z, c                 s   s   | ]}t |V  qd S )N)str)r0   br"   r"   r#   r3   m  s     z"_minimize_slsqp.<locals>.<genexpr>)r!   r   r    rC   r5   z%5s %5s %16s %16s)ZNITZFCZOBJFUNZGNORMg        rG   z%5i %5i % 16.6E % 16.6Ez    (Exit mode )z#            Current function value:z            Iterations:z!            Function evaluations:z!            Gradient evaluations:)	r   r.   r!   r7   nfevZnjevr8   r9   success)2r   r	   flattenlenr   infr   Zclip
isinstancedict	enumeratelowerKeyError	TypeErrorAttributeError
ValueErrorgetsummapr   maxr   emptyfloatfillnanshape
IndexErrorZerrstateanyjoinr   r   r   r.   Zgradintprintr   _eval_constraint_eval_con_normalsr   copyr[   r   ZnormabsrX   Zngevr   )Cr   r<   r   r!   r5   r6   r%   r&   r'   r(   r)   r*   rC   Zunknown_optionsr=   r>   r@   ZicconctypeerE   rF   Z
exit_modesmeqmieqmlanZn1ZmineqZlen_wZlen_jwwZjwZxlZxuZbndsZbnderrZinfbndZsfZwrapped_funZwrapped_gradmodeZmajiterZmajiter_prevalphaZf0Zgsh1h2h3h4tt0ZtolZiexactZinconsZiresetZitermxlineZn2Zn3Zfxgr1   ar"   )r    rC   r!   rD   r   r#   r;      sp   








>*
"























               






 
 

  
 r;   c                    sh   |d r$t  fdd|d D }ntd}|d rPt  fdd|d D }ntd}t ||f}|S )Nr+   c                    s&   g | ]}t |d   f|d  qS rP   rQ   r0   rz   rR   r"   r#   rS     s   z$_eval_constraint.<locals>.<listcomp>r   r4   c                    s&   g | ]}t |d   f|d  qS rP   rQ   r   rR   r"   r#   rS     s   )r
   r   )r   r@   Zc_eqZc_ieqr1   r"   rR   r#   rv     s    

rv   c           
         s   |d r$t  fdd|d D }nt||f}|d rTt  fdd|d D }nt||f}|dkrvt||f}	nt ||f}	t|	t|dgfd}	|	S )Nr+   c                    s"   g | ]}|d   f|d  qS r!   r   r"   r   rR   r"   r#   rS     s   z%_eval_con_normals.<locals>.<listcomp>r4   c                    s"   g | ]}|d   f|d  qS r   r"   r   rR   r"   r#   rS     s   r   r   )r   r   r
   )
r   r@   r   r   r   r}   r~   Za_eqZa_ieqr   r"   rR   r#   rw     s    

rw   )%__doc____all__Znumpyr   Zscipy.optimize._slsqpr   r   r   r   r   r	   r
   r   r   r   r   r   	_optimizer   r   r   r   r   Z_numdiffr   Z_constraintsr   r   Z__docformat__rm   r)   Z_epsilonr   r   r;   rv   rw   r"   r"   r"   r#   <module>   sL   4"        
      
 {