U
    Gvf                     @   s8   d dl Zd dlZddgZeddZd	ddZdd ZdS )
    Nsave_npzload_npzF)Zallow_pickleTc                 C   s   i }|j dkr"|j|j|jd nH|j dkr<|j|jd n.|j dkrZ|j|j|jd ntd |j |j|j d|j	|j
d	 |rtj| f| ntj| f| d
S )ac   Save a sparse matrix to a file using ``.npz`` format.

    Parameters
    ----------
    file : str or file-like object
        Either the file name (string) or an open file (file-like object)
        where the data will be saved. If file is a string, the ``.npz``
        extension will be appended to the file name if it is not already
        there.
    matrix: spmatrix (format: ``csc``, ``csr``, ``bsr``, ``dia`` or coo``)
        The sparse matrix to save.
    compressed : bool, optional
        Allow compressing the file. Default: True

    See Also
    --------
    scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
    numpy.savez: Save several arrays into a ``.npz`` archive.
    numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.

    Examples
    --------
    Store sparse matrix to disk, and load it again:

    >>> import numpy as np
    >>> import scipy.sparse
    >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
    >>> sparse_matrix
    <2x3 sparse matrix of type '<class 'numpy.int64'>'
       with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
    >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')

    >>> sparse_matrix
    <2x3 sparse matrix of type '<class 'numpy.int64'>'
       with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)
    ZcscZcsrZbsr)indicesindptrdia)offsetscoo)rowcolz7Save is not implemented for sparse matrix of format {}.ascii)formatshapedataN)r   updater   r   r   r
   r   NotImplementedErrorencoder   r   npZsavez_compressedZsavez)fileZmatrix
compressedZarrays_dict r   ;/tmp/pip-unpacked-wheel-96ln3f52/scipy/sparse/_matrix_io.pyr      s     -



c                 C   sv  t j| ft\}z|d }W n2 tk
rP } ztd| |W 5 d}~X Y nX | }t|tsn|	d}zt
tjd|}W n2 tk
r } ztd||W 5 d}~X Y nX |dkr||d |d	 |d
 f|d dW  5 Q R  S |dkr ||d |d f|d dW  5 Q R  S |dkrZ||d |d |d ff|d dW  5 Q R  S td|W 5 Q R X dS )a   Load a sparse matrix from a file using ``.npz`` format.

    Parameters
    ----------
    file : str or file-like object
        Either the file name (string) or an open file (file-like object)
        where the data will be loaded.

    Returns
    -------
    result : csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix
        A sparse matrix containing the loaded data.

    Raises
    ------
    OSError
        If the input file does not exist or cannot be read.

    See Also
    --------
    scipy.sparse.save_npz: Save a sparse matrix to a file using ``.npz`` format.
    numpy.load: Load several arrays from a ``.npz`` archive.

    Examples
    --------
    Store sparse matrix to disk, and load it again:

    >>> import numpy as np
    >>> import scipy.sparse
    >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
    >>> sparse_matrix
    <2x3 sparse matrix of type '<class 'numpy.int64'>'
       with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
    >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')

    >>> sparse_matrix
    <2x3 sparse matrix of type '<class 'numpy.int64'>'
        with 2 stored elements in Compressed Sparse Column format>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)
    r   z-The file {} does not contain a sparse matrix.Nr   z	{}_matrixzUnknown matrix format "{}"r   r   r   r   r   )r   r   r   r	   r
   r   z7Load is not implemented for sparse matrix of format {}.)r   loadPICKLE_KWARGSKeyError
ValueErrorr   item
isinstancestrdecodegetattrscipysparseAttributeErrorr   )r   ZloadedZmatrix_formateclsr   r   r   r   L   s*    1"

".
(
0)T)	Znumpyr   Zscipy.sparser!   __all__dictr   r   r   r   r   r   r   <module>   s
   

A