U
    Gvfa  ã                   @   s(   d dl ZddlmZ dgZddd„ZdS )	é    Né   )Úmake_systemÚtfqmrçñhãˆµøä>Fc	           "      C   s  | j }	t |	tj¡r"t}	|  |	¡} t |j tj¡r<| |	¡}t| |||ƒ\} }}
}}tj |¡dkrx| 	¡ }
||
ƒdfS | j
d }|dkr˜td|d ƒ}|dkrª| 	¡ }n||  |
¡ }|}| 	¡ }|}| |  |¡¡}|}d } }}t | ¡ |¡}|}t |¡}|}|dkr ||
ƒdfS |dkr4|| }nt||| ƒ}t|ƒD ]}|d dk}|r t | ¡ |¡}|dkrŒ||
ƒdf  S || }|||  }||| 8 }||d | | |  }tj |¡| }t dd	|d   ¡}||| 9 }|d | }| |¡} |
||  7 }
|dk	r*||
ƒ |t |d	 ¡ |k rj|rZtd
 |d	 ¡ƒ ||
ƒdf  S |sÂt | ¡ |¡}|| }!||!|  }|!| |!d |  }| |  |¡¡}||7 }n| |  |¡¡}|}|}qJ|rötd |d	 ¡ƒ ||
ƒ|fS )aÊ  
    Use Transpose-Free Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, `A` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        `scipy.sparse.linalg.LinearOperator`.
    b : {ndarray}
        Right hand side of the linear system. Has shape (N,) or (N,1).
    x0 : {ndarray}
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b-Ax0), atol)``.
        The default for `tol` is 1.0e-5.
        The default for `atol` is ``tol * norm(b-Ax0)``.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : int, optional
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
        Default is ``min(10000, ndofs * 10)``, where ``ndofs = A.shape[0]``.
    M : {sparse matrix, ndarray, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function, optional
        User-supplied function to call after each iteration.  It is called
        as `callback(xk)`, where `xk` is the current solution vector.
    show : bool, optional
        Specify ``show = True`` to show the convergence, ``show = False`` is
        to close the output of the convergence.
        Default is `False`.

    Returns
    -------
    x : ndarray
        The converged solution.
    info : int
        Provides convergence information:

            - 0  : successful exit
            - >0 : convergence to tolerance not achieved, number of iterations
            - <0 : illegal input or breakdown

    Notes
    -----
    The Transpose-Free QMR algorithm is derived from the CGS algorithm.
    However, unlike CGS, the convergence curves for the TFQMR method is
    smoothed by computing a quasi minimization of the residual norm. The
    implementation supports left preconditioner, and the "residual norm"
    to compute in convergence criterion is actually an upper bound on the
    actual residual norm ``||b - Axk||``.

    References
    ----------
    .. [1] R. W. Freund, A Transpose-Free Quasi-Minimal Residual Algorithm for
           Non-Hermitian Linear Systems, SIAM J. Sci. Comput., 14(2), 470-482,
           1993.
    .. [2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition,
           SIAM, Philadelphia, 2003.
    .. [3] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
           number 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia,
           1995.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import tfqmr
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = tfqmr(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    g        r   Ni'  é
   é   éÿÿÿÿg      ð?r   z<TFQMR: Linear solve converged due to reach TOL iterations {}zBTFQMR: Linear solve not converged due to reach MAXIT iterations {})ÚdtypeÚnpZ
issubdtypeZint64ÚfloatZastyper   ZlinalgZnormÚcopyÚshapeÚminZmatvecÚinnerÚ	conjugateÚsqrtÚmaxÚrangeÚprintÚformat)"ÚAÚbZx0ZtolÚmaxiterÚMÚcallbackZatolÚshowr	   ÚxÚpostprocessZndofsÚrÚuÚwZrstarÚvZuhatÚdÚthetaÚetaÚrhoZrhoLastZr0normÚtauÚiterZevenZvtrstarÚalphaZuNextÚcÚzÚbeta© r,   úE/tmp/pip-unpacked-wheel-96ln3f52/scipy/sparse/linalg/_isolve/tfqmr.pyr      sŒ    Y










ÿ
ÿ)Nr   NNNNF)Znumpyr
   Úutilsr   Ú__all__r   r,   r,   r,   r-   Ú<module>   s         ÿ