U
    Hvf                     @   s*   d Z ddlZddlmZ dgZdd ZdS )zVSome more special functions which may be useful for multivariate statistical
analysis.    N)gammalnmultigammalnc                    s   t   t |r"t ||kr*tdt  d|d  krXtd d|d  f ||d  d t t j }|t jt	 fddt
d|d D dd	7 }|S )
a  Returns the log of multivariate gamma, also sometimes called the
    generalized gamma.

    Parameters
    ----------
    a : ndarray
        The multivariate gamma is computed for each item of `a`.
    d : int
        The dimension of the space of integration.

    Returns
    -------
    res : ndarray
        The values of the log multivariate gamma at the given points `a`.

    Notes
    -----
    The formal definition of the multivariate gamma of dimension d for a real
    `a` is

    .. math::

        \Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA

    with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
    all the positive definite matrices of dimension `d`.  Note that `a` is a
    scalar: the integrand only is multivariate, the argument is not (the
    function is defined over a subset of the real set).

    This can be proven to be equal to the much friendlier equation

    .. math::

        \Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).

    References
    ----------
    R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
    probability and mathematical statistics).

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.special import multigammaln, gammaln
    >>> a = 23.5
    >>> d = 10
    >>> multigammaln(a, d)
    454.1488605074416

    Verify that the result agrees with the logarithm of the equation
    shown above:

    >>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
    454.1488605074416
    z*d should be a positive integer (dimension)g      ?   z+condition a (%f) > 0.5 * (d-1) (%f) not metg      ?c                    s   g | ]} |d  d  qS )g      ?    ).0jar   >/tmp/pip-unpacked-wheel-96ln3f52/scipy/special/_spfun_stats.py
<listcomp>j   s     z multigammaln.<locals>.<listcomp>r   )Zaxis)npZasarrayZisscalarfloor
ValueErroranylogpisumloggamrange)r
   dresr   r	   r   r   *   s    8
.)__doc__Znumpyr   Zscipy.specialr   r   __all__r   r   r   r   r   <module>    s   