U
    Kvf                     @   s&   d Z ddlZddlmZ dddZdS )	zE
Bland-Altman mean-difference plots

Author: Joses Ho
License: BSD-3
    N   )utils\(\?c                 C   s0  t |\}}t| t|kr&td|dk r<td|tj| |gdd}| | }	t|	}
tj|	dd}|pti }d|krd|d< |pi }|pi }||fD ]$}d|krd|d< d	|krd
|d	< qd|krd|d< d|krd|d< |j||	f| |j	|
f| |j
dt|
ddddddd |dkrd| | }||
| |
|  || }|
| }|
| }t||gD ]\}}|j	|f| qt|j
d| d|ddddddd |j
d| d|dddddd n&|dkrd| }||
| |
|  |jd d!d" |jd#d!d" |jd$d% |  |S )&a	  
    Construct a Tukey/Bland-Altman Mean Difference Plot.

    Tukey's Mean Difference Plot (also known as a Bland-Altman plot) is a
    graphical method to analyze the differences between two methods of
    measurement. The mean of the measures is plotted against their difference.

    For more information see
    https://en.wikipedia.org/wiki/Bland-Altman_plot

    Parameters
    ----------
    m1 : array_like
        A 1-d array.
    m2 : array_like
        A 1-d array.
    sd_limit : float
        The limit of agreements expressed in terms of the standard deviation of
        the differences. If `md` is the mean of the differences, and `sd` is
        the standard deviation of those differences, then the limits of
        agreement that will be plotted are md +/- sd_limit * sd.
        The default of 1.96 will produce 95% confidence intervals for the means
        of the differences. If sd_limit = 0, no limits will be plotted, and
        the ylimit of the plot defaults to 3 standard deviations on either
        side of the mean.
    ax : AxesSubplot
        If `ax` is None, then a figure is created. If an axis instance is
        given, the mean difference plot is drawn on the axis.
    scatter_kwds : dict
        Options to to style the scatter plot. Accepts any keywords for the
        matplotlib Axes.scatter plotting method
    mean_line_kwds : dict
        Options to to style the scatter plot. Accepts any keywords for the
        matplotlib Axes.axhline plotting method
    limit_lines_kwds : dict
        Options to to style the scatter plot. Accepts any keywords for the
        matplotlib Axes.axhline plotting method

    Returns
    -------
    Figure
        If `ax` is None, the created figure.  Otherwise the figure to which
        `ax` is connected.

    References
    ----------
    Bland JM, Altman DG (1986). "Statistical methods for assessing agreement
    between two methods of clinical measurement"

    Examples
    --------

    Load relevant libraries.

    >>> import statsmodels.api as sm
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt

    Making a mean difference plot.

    >>> # Seed the random number generator.
    >>> # This ensures that the results below are reproducible.
    >>> np.random.seed(9999)
    >>> m1 = np.random.random(20)
    >>> m2 = np.random.random(20)
    >>> f, ax = plt.subplots(1, figsize = (8,5))
    >>> sm.graphics.mean_diff_plot(m1, m2, ax = ax)
    >>> plt.show()

    .. plot:: plots/graphics-mean_diff_plot.py
    z'm1 does not have the same length as m2.r   zsd_limit ({}) is less than 0.)Zaxiss   colorZgrayZ	linewidthr   Z	linestylez--:zmean diff:
{}   )Gz?g      ?rightcenter   zaxes fraction)xyhorizontalalignmentZverticalalignmentfontsizexycoordsg      ?-z SD: z0.2g)r
   gQ?Zbottom+)r
   gq=
ףp?)r   r   r   r      Z
Difference   )r   ZMeans   )Z	labelsize)r   Zcreate_mpl_axlen
ValueErrorformatnpZmeanZstdZscatterZaxhlineZannotateroundZset_ylim	enumerateZ
set_ylabelZ
set_xlabelZtick_paramsZtight_layout)m1m2Zsd_limitZaxZscatter_kwdsZmean_line_kwdsZlimit_lines_kwdsZfigZmeansZdiffsZ	mean_diffZstd_diffkwdsZ	half_ylimZlimit_of_agreementlowerupperjZlim r#   B/tmp/pip-unpacked-wheel-2v6byqio/statsmodels/graphics/agreement.pymean_diff_plot   s    I





r%   )r   NNNN)__doc__Znumpyr    r   r%   r#   r#   r#   r$   <module>   s       