U
    Kvf9                  m   @   sV  d Z ddlZddlmZ ddlmZmZ dd Zdd
dZ	dd Z
dddZd ddZdddZddddgZedkrRed dZeeZdZedddddddddd d!d"gZeddgd#d$gd%d&gd%d&gd%d&gd%d&gd%d&gd%d&gd%d&gd%d&gd#d$gddggZejed'e f Zeeeed	d( eeeed	d( ed)d* eeeD  eed+dd	d(Zeed'dd	d(Zee ee eeee   eeed+ ddf eedd,d( eeed' e d' d+ df eedd-d( eede d+ df eeed	d( ed. ejed'e f Zeeed+dd-d( eeeed	d( eeeed	d( eeed+ dddf eedd,d( eeed' e d' d+ ddf eedd-d( eede d+ ddf eeed	d( eeed+ d eed+dd,d( eeed' e d' d+  eed+dd-d( eede d+  eeed	d( dd/lmZ eejj eed+d+d+gd dd0 edd1d2d3dd4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~ddddddddddddddddddddgdZ!ee!eeddd	 ed2d3dd4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~dddddddddddddddddddddddddddddgkZ"ee"eeddd, eddddddddd dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddgdZ#ee#eeddd- dS (  a  using scipy signal and numpy correlate to calculate some time series
statistics

original developer notes

see also scikits.timeseries  (movstat is partially inspired by it)
added 2009-08-29
timeseries moving stats are in c, autocorrelation similar to here
I thought I saw moving stats somewhere in python, maybe not)


TODO

moving statistics
- filters do not handle boundary conditions nicely (correctly ?)
e.g. minimum order filter uses 0 for out of bounds value
-> append and prepend with last resp. first value
- enhance for nd arrays, with axis = 0



Note: Equivalence for 1D signals
>>> np.all(signal.correlate(x,[1,1,1],'valid')==np.correlate(x,[1,1,1]))
True
>>> np.all(ndimage.filters.correlate(x,[1,1,1], origin = -1)[:-3+1]==np.correlate(x,[1,1,1]))
True

# multidimensional, but, it looks like it uses common filter across time series, no VAR
ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)
ndimage.filters.correlate(x,[1,1,1],origin = 1))
ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), origin = 1)

>>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1))
True
>>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1))


update
2009-09-06: cosmetic changes, rearrangements
    N)signal)assert_array_equalassert_array_almost_equalc                 C   sP   |}t | dkr$|t | d f}t jt || d  | t || d  f S )N      r   )npndimshapeZr_ones)xkZkadd r   C/tmp/pip-unpacked-wheel-2v6byqio/statsmodels/sandbox/tsa/movstat.py	expandarr3   s    r   med   laggedc                 C   s   |dkr|d }n*|dkr d}n|dkr8| d d }nt t|rL|}n:|dkrb|d d }n$|dkrpd}n|d	kr|d }nt t| |}t|t|||| ||   S )
an  moving order statistics

    Parameters
    ----------
    x : ndarray
       time series data
    order : float or 'med', 'min', 'max'
       which order statistic to calculate
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    filtered array


    r   r   centeredr   leadingr   r   minmax)
ValueErrorr   isfiniter   r   Zorder_filterr   )r   orderwindsizelagleadordxextr   r   r   movorder:   s$    



r    c                  C   s6  ddl m}  tdd}t|dd}t|| tddd}t|dd}t|| tt|dd	d
dd |dd  tddtj d}t|d }t|dd}| 	  | 
||d||d | d t|dd	d
}| 	  | 
||d||d | d t|ddd
}| 	  | 
||d||d | d dS )zgraphical test for movorderr   Nr   
   r   )r   r   r   r   )r   r   r      z.-zmoving max laggedzmoving max centeredr   zmoving max leading)Zmatplotlib.pylabZpylabr   aranger    r   ZlinspacepisinfigureZplottitle)Zpltr   Zxottr   r   r   check_movorderh   s,    

$

r)   c                 C   s   t | d||dS )a  moving window mean


    Parameters
    ----------
    x : ndarray
       time series data
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    mk : ndarray
        moving mean, with same shape as x


    Notes
    -----
    for leading and lagging the data array x is extended by the closest value of the array


    r   
windowsizer   	movmoment)r   r+   r   r   r   r   movmean   s    r.   c                 C   s,   t | d||d}t | d||d}|||  S )aG  moving window variance


    Parameters
    ----------
    x : ndarray
       time series data
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    mk : ndarray
        moving variance, with same shape as x


    r   r*   r   r,   )r   r+   r   m1m2r   r   r   movvar   s    r1   c           	      C   sT  |}|dkr0d}t |d pdd|d  p*d}n|dkrp| d }t |d |d  pVd|d  |d  pjd}nL|dkr| d }t d|d  d | pdd|d  |  d pd}ntt|t| }t| |d }t| |jdkrt|| |d	| S t|j	 t|dddf j	 t
|| |dddf d	|ddf S dS )
a  non-central moment


    Parameters
    ----------
    x : ndarray
       time series data
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    mk : ndarray
        k-th moving non-central moment, with same shape as x


    Notes
    -----
    If data x is 2d, then moving moment is calculated for each
    column.

    r   r   r   Nr   r   r   full)slicer   r   r   floatr   printr	   Z	correlater
   r   )	r   r   r+   r   r   r   slZavgkernr   r   r   r   r-      s&     
.
6
r-   __main__z!
checkin moving mean and variancer!   g        gUUUUUU?g      ?g       @g      @g      @g      @g      @g      @g       @gUUUUUU!@	   g#q?g|
q?gvWUU?gUUU@r   r*   c                 C   s"   g | ]}t t|t | qS r   )r   varr   ws).0ir   r   r   
<listcomp><  s     r>   r   r   r   z-
checking moving moment for 2d (columns only))ndimage)Zaxisg?g333333?g333333?g      ?g @gffffff@g@g      @g      @g      @g      @g      !@g      #@g      %@g      '@g      )@g      +@g      -@g      /@g     0@g     1@g     2@g     3@g     4@g     5@g     6@g     7@g     8@g     9@g     :@g     ;@g     <@g     =@g     >@g     ?@g     @@@g     @@g     @A@g     A@g     @B@g     B@g     @C@g     C@g     @D@g     D@g     @E@g     E@g     @F@g     F@g     @G@g     G@g     @H@g     H@g     @I@g     I@g     @J@g     J@g     @K@g     K@g     @L@g     L@g     @M@g     M@g     @N@g     N@g     @O@g     O@g      P@g     `P@g     P@g     P@g      Q@g     `Q@g     Q@g     Q@g      R@g     `R@g     R@g     R@g      S@g     `S@g     S@g     S@g      T@g     `T@g     T@g     T@g      U@g     `U@g     U@g     U@g      V@g     `V@g     V@g     V@g      W@g     `W@g     W@d   gW@gX@g9X@g     `X@g     X@gX@g̬X@gX@g     X@g<b\t?gq袋?gmF]@g.
@g$E]@g      "@g      $@g      &@g      (@g      *@g      ,@g      .@g      0@g      1@g      2@g      3@g      4@g      5@g      6@g      7@g      8@g      9@g      :@g      ;@g      <@g      =@g      >@g      ?@g      @@g     @@g      A@g     A@g      B@g     B@g      C@g     C@g      D@g     D@g      E@g     E@g      F@g     F@g      G@g     G@g      H@g     H@g      I@g     I@g      J@g     J@g      K@g     K@g      L@g     L@g      M@g     M@g      N@g     N@g      O@g     O@g      P@g     @P@g     P@g     P@g      Q@g     @Q@g     Q@g     Q@g      R@g     @R@g     R@g     R@g      S@g     @S@g     S@g     S@g      T@g     @T@g     T@g     T@g      U@g     @U@g     U@g     U@g      V@g     @V@g     V@g     V@g      W@g     @W@g     W@g⣋.W@g٧뢋W@gEX@gb\tEX@gw.hX@   )r   r   r   )r   r   )r   r   )r   r   )$__doc__Znumpyr   Zscipyr   Znumpy.testingr   r   r   r    r)   r.   r1   r-   __all____name__r6   Znobsr#   r   r;   arrayZavevaZc_Zave2dranger/   r0   Zx2dr?   filtersZcorrelate1dZxgZxdZxcr   r   r   r   <module>   s  ,
.5
S

 
"&                                                                                                                                                                                                                                               