from __future__ import annotations

import sys
from textwrap import dedent

import numpy as np
import pandas as pd
import pytest
from numpy.core import defchararray

import xarray as xr
from xarray.core import formatting
from xarray.tests import requires_dask, requires_netCDF4


class TestFormatting:
    def test_get_indexer_at_least_n_items(self) -> None:
        cases = [
            ((20,), (slice(10),), (slice(-10, None),)),
            ((3, 20), (0, slice(10)), (-1, slice(-10, None))),
            ((2, 10), (0, slice(10)), (-1, slice(-10, None))),
            ((2, 5), (slice(2), slice(None)), (slice(-2, None), slice(None))),
            ((1, 2, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
            ((2, 3, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
            (
                (1, 10, 1),
                (0, slice(10), slice(None)),
                (-1, slice(-10, None), slice(None)),
            ),
            (
                (2, 5, 1),
                (slice(2), slice(None), slice(None)),
                (slice(-2, None), slice(None), slice(None)),
            ),
            ((2, 5, 3), (0, slice(4), slice(None)), (-1, slice(-4, None), slice(None))),
            (
                (2, 3, 3),
                (slice(2), slice(None), slice(None)),
                (slice(-2, None), slice(None), slice(None)),
            ),
        ]
        for shape, start_expected, end_expected in cases:
            actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=False)
            assert start_expected == actual
            actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=True)
            assert end_expected == actual

    def test_first_n_items(self) -> None:
        array = np.arange(100).reshape(10, 5, 2)
        for n in [3, 10, 13, 100, 200]:
            actual = formatting.first_n_items(array, n)
            expected = array.flat[:n]
            assert (expected == actual).all()

        with pytest.raises(ValueError, match=r"at least one item"):
            formatting.first_n_items(array, 0)

    def test_last_n_items(self) -> None:
        array = np.arange(100).reshape(10, 5, 2)
        for n in [3, 10, 13, 100, 200]:
            actual = formatting.last_n_items(array, n)
            expected = array.flat[-n:]
            assert (expected == actual).all()

        with pytest.raises(ValueError, match=r"at least one item"):
            formatting.first_n_items(array, 0)

    def test_last_item(self) -> None:
        array = np.arange(100)

        reshape = ((10, 10), (1, 100), (2, 2, 5, 5))
        expected = np.array([99])

        for r in reshape:
            result = formatting.last_item(array.reshape(r))
            assert result == expected

    def test_format_item(self) -> None:
        cases = [
            (pd.Timestamp("2000-01-01T12"), "2000-01-01T12:00:00"),
            (pd.Timestamp("2000-01-01"), "2000-01-01"),
            (pd.Timestamp("NaT"), "NaT"),
            (pd.Timedelta("10 days 1 hour"), "10 days 01:00:00"),
            (pd.Timedelta("-3 days"), "-3 days +00:00:00"),
            (pd.Timedelta("3 hours"), "0 days 03:00:00"),
            (pd.Timedelta("NaT"), "NaT"),
            ("foo", "'foo'"),
            (b"foo", "b'foo'"),
            (1, "1"),
            (1.0, "1.0"),
            (np.float16(1.1234), "1.123"),
            (np.float32(1.0111111), "1.011"),
            (np.float64(22.222222), "22.22"),
        ]
        for item, expected in cases:
            actual = formatting.format_item(item)
            assert expected == actual

    def test_format_items(self) -> None:
        cases = [
            (np.arange(4) * np.timedelta64(1, "D"), "0 days 1 days 2 days 3 days"),
            (
                np.arange(4) * np.timedelta64(3, "h"),
                "00:00:00 03:00:00 06:00:00 09:00:00",
            ),
            (
                np.arange(4) * np.timedelta64(500, "ms"),
                "00:00:00 00:00:00.500000 00:00:01 00:00:01.500000",
            ),
            (pd.to_timedelta(["NaT", "0s", "1s", "NaT"]), "NaT 00:00:00 00:00:01 NaT"),
            (
                pd.to_timedelta(["1 day 1 hour", "1 day", "0 hours"]),
                "1 days 01:00:00 1 days 00:00:00 0 days 00:00:00",
            ),
            ([1, 2, 3], "1 2 3"),
        ]
        for item, expected in cases:
            actual = " ".join(formatting.format_items(item))
            assert expected == actual

    def test_format_array_flat(self) -> None:
        actual = formatting.format_array_flat(np.arange(100), 2)
        expected = "..."
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 9)
        expected = "0 ... 99"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 10)
        expected = "0 1 ... 99"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 13)
        expected = "0 1 ... 98 99"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100), 15)
        expected = "0 1 2 ... 98 99"
        assert expected == actual

        # NB: Probably not ideal; an alternative would be cutting after the
        # first ellipsis
        actual = formatting.format_array_flat(np.arange(100.0), 11)
        expected = "0.0 ... ..."
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(100.0), 12)
        expected = "0.0 ... 99.0"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(3), 5)
        expected = "0 1 2"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(4.0), 11)
        expected = "0.0 ... 3.0"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(0), 0)
        expected = ""
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(1), 1)
        expected = "0"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(2), 3)
        expected = "0 1"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(4), 7)
        expected = "0 1 2 3"
        assert expected == actual

        actual = formatting.format_array_flat(np.arange(5), 7)
        expected = "0 ... 4"
        assert expected == actual

        long_str = [" ".join(["hello world" for _ in range(100)])]
        actual = formatting.format_array_flat(np.asarray([long_str]), 21)
        expected = "'hello world hello..."
        assert expected == actual

    def test_pretty_print(self) -> None:
        assert formatting.pretty_print("abcdefghij", 8) == "abcde..."
        assert formatting.pretty_print("ß", 1) == "ß"

    def test_maybe_truncate(self) -> None:
        assert formatting.maybe_truncate("ß", 10) == "ß"

    def test_format_timestamp_invalid_pandas_format(self) -> None:
        expected = "2021-12-06 17:00:00 00"
        with pytest.raises(ValueError):
            formatting.format_timestamp(expected)

    def test_format_timestamp_out_of_bounds(self) -> None:
        from datetime import datetime

        date = datetime(1300, 12, 1)
        expected = "1300-12-01"
        result = formatting.format_timestamp(date)
        assert result == expected

        date = datetime(2300, 12, 1)
        expected = "2300-12-01"
        result = formatting.format_timestamp(date)
        assert result == expected

    def test_attribute_repr(self) -> None:
        short = formatting.summarize_attr("key", "Short string")
        long = formatting.summarize_attr("key", 100 * "Very long string ")
        newlines = formatting.summarize_attr("key", "\n\n\n")
        tabs = formatting.summarize_attr("key", "\t\t\t")
        assert short == "    key: Short string"
        assert len(long) <= 80
        assert long.endswith("...")
        assert "\n" not in newlines
        assert "\t" not in tabs

    def test_index_repr(self):
        from xarray.core.indexes import Index

        class CustomIndex(Index):
            def __init__(self, names):
                self.names = names

            def __repr__(self):
                return f"CustomIndex(coords={self.names})"

        coord_names = ["x", "y"]
        index = CustomIndex(coord_names)
        name = "x"

        normal = formatting.summarize_index(name, index, col_width=20)
        assert name in normal
        assert "CustomIndex" in normal

        CustomIndex._repr_inline_ = (
            lambda self, max_width: f"CustomIndex[{', '.join(self.names)}]"
        )
        inline = formatting.summarize_index(name, index, col_width=20)
        assert name in inline
        assert index._repr_inline_(max_width=40) in inline

    def test_diff_array_repr(self) -> None:
        da_a = xr.DataArray(
            np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"),
            dims=("x", "y"),
            coords={
                "x": np.array(["a", "b"], dtype="U1"),
                "y": np.array([1, 2, 3], dtype="int64"),
            },
            attrs={"units": "m", "description": "desc"},
        )

        da_b = xr.DataArray(
            np.array([1, 2], dtype="int64"),
            dims="x",
            coords={
                "x": np.array(["a", "c"], dtype="U1"),
                "label": ("x", np.array([1, 2], dtype="int64")),
            },
            attrs={"units": "kg"},
        )

        byteorder = "<" if sys.byteorder == "little" else ">"
        expected = dedent(
            """\
        Left and right DataArray objects are not identical
        Differing dimensions:
            (x: 2, y: 3) != (x: 2)
        Differing values:
        L
            array([[1, 2, 3],
                   [4, 5, 6]], dtype=int64)
        R
            array([1, 2], dtype=int64)
        Differing coordinates:
        L * x        (x) %cU1 'a' 'b'
        R * x        (x) %cU1 'a' 'c'
        Coordinates only on the left object:
          * y        (y) int64 1 2 3
        Coordinates only on the right object:
            label    (x) int64 1 2
        Differing attributes:
        L   units: m
        R   units: kg
        Attributes only on the left object:
            description: desc"""
            % (byteorder, byteorder)
        )

        actual = formatting.diff_array_repr(da_a, da_b, "identical")
        try:
            assert actual == expected
        except AssertionError:
            # depending on platform, dtype may not be shown in numpy array repr
            assert actual == expected.replace(", dtype=int64", "")

        va = xr.Variable(
            "x", np.array([1, 2, 3], dtype="int64"), {"title": "test Variable"}
        )
        vb = xr.Variable(("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"))

        expected = dedent(
            """\
        Left and right Variable objects are not equal
        Differing dimensions:
            (x: 3) != (x: 2, y: 3)
        Differing values:
        L
            array([1, 2, 3], dtype=int64)
        R
            array([[1, 2, 3],
                   [4, 5, 6]], dtype=int64)"""
        )

        actual = formatting.diff_array_repr(va, vb, "equals")
        try:
            assert actual == expected
        except AssertionError:
            assert actual == expected.replace(", dtype=int64", "")

    @pytest.mark.filterwarnings("error")
    def test_diff_attrs_repr_with_array(self) -> None:
        attrs_a = {"attr": np.array([0, 1])}

        attrs_b = {"attr": 1}
        expected = dedent(
            """\
            Differing attributes:
            L   attr: [0 1]
            R   attr: 1
            """
        ).strip()
        actual = formatting.diff_attrs_repr(attrs_a, attrs_b, "equals")
        assert expected == actual

        attrs_c = {"attr": np.array([-3, 5])}
        expected = dedent(
            """\
            Differing attributes:
            L   attr: [0 1]
            R   attr: [-3  5]
            """
        ).strip()
        actual = formatting.diff_attrs_repr(attrs_a, attrs_c, "equals")
        assert expected == actual

        # should not raise a warning
        attrs_c = {"attr": np.array([0, 1, 2])}
        expected = dedent(
            """\
            Differing attributes:
            L   attr: [0 1]
            R   attr: [0 1 2]
            """
        ).strip()
        actual = formatting.diff_attrs_repr(attrs_a, attrs_c, "equals")
        assert expected == actual

    def test_diff_dataset_repr(self) -> None:
        ds_a = xr.Dataset(
            data_vars={
                "var1": (("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64")),
                "var2": ("x", np.array([3, 4], dtype="int64")),
            },
            coords={
                "x": np.array(["a", "b"], dtype="U1"),
                "y": np.array([1, 2, 3], dtype="int64"),
            },
            attrs={"units": "m", "description": "desc"},
        )

        ds_b = xr.Dataset(
            data_vars={"var1": ("x", np.array([1, 2], dtype="int64"))},
            coords={
                "x": ("x", np.array(["a", "c"], dtype="U1"), {"source": 0}),
                "label": ("x", np.array([1, 2], dtype="int64")),
            },
            attrs={"units": "kg"},
        )

        byteorder = "<" if sys.byteorder == "little" else ">"
        expected = dedent(
            """\
        Left and right Dataset objects are not identical
        Differing dimensions:
            (x: 2, y: 3) != (x: 2)
        Differing coordinates:
        L * x        (x) %cU1 'a' 'b'
        R * x        (x) %cU1 'a' 'c'
            source: 0
        Coordinates only on the left object:
          * y        (y) int64 1 2 3
        Coordinates only on the right object:
            label    (x) int64 1 2
        Differing data variables:
        L   var1     (x, y) int64 1 2 3 4 5 6
        R   var1     (x) int64 1 2
        Data variables only on the left object:
            var2     (x) int64 3 4
        Differing attributes:
        L   units: m
        R   units: kg
        Attributes only on the left object:
            description: desc"""
            % (byteorder, byteorder)
        )

        actual = formatting.diff_dataset_repr(ds_a, ds_b, "identical")
        assert actual == expected

    def test_array_repr(self) -> None:
        ds = xr.Dataset(coords={"foo": [1, 2, 3], "bar": [1, 2, 3]})
        ds[(1, 2)] = xr.DataArray([0], dims="test")
        ds_12 = ds[(1, 2)]

        # Test repr function behaves correctly:
        actual = formatting.array_repr(ds_12)
        expected = dedent(
            """\
        <xarray.DataArray (1, 2) (test: 1)>
        array([0])
        Dimensions without coordinates: test"""
        )

        assert actual == expected

        # Test repr, str prints returns correctly as well:
        assert repr(ds_12) == expected
        assert str(ds_12) == expected

        # f-strings (aka format(...)) by default should use the repr:
        actual = f"{ds_12}"
        assert actual == expected

        with xr.set_options(display_expand_data=False):
            actual = formatting.array_repr(ds[(1, 2)])
            expected = dedent(
                """\
            <xarray.DataArray (1, 2) (test: 1)>
            0
            Dimensions without coordinates: test"""
            )

            assert actual == expected

    def test_array_repr_variable(self) -> None:
        var = xr.Variable("x", [0, 1])

        formatting.array_repr(var)

        with xr.set_options(display_expand_data=False):
            formatting.array_repr(var)

    def test_array_repr_recursive(self) -> None:
        # GH:issue:7111

        # direct recurion
        var = xr.Variable("x", [0, 1])
        var.attrs["x"] = var
        formatting.array_repr(var)

        da = xr.DataArray([0, 1], dims=["x"])
        da.attrs["x"] = da
        formatting.array_repr(da)

        # indirect recursion
        var.attrs["x"] = da
        da.attrs["x"] = var
        formatting.array_repr(var)
        formatting.array_repr(da)

    @requires_dask
    def test_array_scalar_format(self) -> None:
        # Test numpy scalars:
        var = xr.DataArray(np.array(0))
        assert format(var, "") == repr(var)
        assert format(var, "d") == "0"
        assert format(var, ".2f") == "0.00"

        # Test dask scalars, not supported however:
        import dask.array as da

        var = xr.DataArray(da.array(0))
        assert format(var, "") == repr(var)
        with pytest.raises(TypeError) as excinfo:
            format(var, ".2f")
        assert "unsupported format string passed to" in str(excinfo.value)

        # Test numpy arrays raises:
        var = xr.DataArray([0.1, 0.2])
        with pytest.raises(NotImplementedError) as excinfo:  # type: ignore
            format(var, ".2f")
        assert "Using format_spec is only supported" in str(excinfo.value)


def test_inline_variable_array_repr_custom_repr() -> None:
    class CustomArray:
        def __init__(self, value, attr):
            self.value = value
            self.attr = attr

        def _repr_inline_(self, width):
            formatted = f"({self.attr}) {self.value}"
            if len(formatted) > width:
                formatted = f"({self.attr}) ..."

            return formatted

        def __array_function__(self, *args, **kwargs):
            return NotImplemented

        @property
        def shape(self) -> tuple[int, ...]:
            return self.value.shape

        @property
        def dtype(self):
            return self.value.dtype

        @property
        def ndim(self):
            return self.value.ndim

    value = CustomArray(np.array([20, 40]), "m")
    variable = xr.Variable("x", value)

    max_width = 10
    actual = formatting.inline_variable_array_repr(variable, max_width=10)

    assert actual == value._repr_inline_(max_width)


def test_set_numpy_options() -> None:
    original_options = np.get_printoptions()
    with formatting.set_numpy_options(threshold=10):
        assert len(repr(np.arange(500))) < 200
    # original options are restored
    assert np.get_printoptions() == original_options


def test_short_numpy_repr() -> None:
    cases = [
        np.random.randn(500),
        np.random.randn(20, 20),
        np.random.randn(5, 10, 15),
        np.random.randn(5, 10, 15, 3),
        np.random.randn(100, 5, 1),
    ]
    # number of lines:
    # for default numpy repr: 167, 140, 254, 248, 599
    # for short_numpy_repr: 1, 7, 24, 19, 25
    for array in cases:
        num_lines = formatting.short_numpy_repr(array).count("\n") + 1
        assert num_lines < 30

    # threshold option (default: 200)
    array2 = np.arange(100)
    assert "..." not in formatting.short_numpy_repr(array2)
    with xr.set_options(display_values_threshold=10):
        assert "..." in formatting.short_numpy_repr(array2)


def test_large_array_repr_length() -> None:

    da = xr.DataArray(np.random.randn(100, 5, 1))

    result = repr(da).splitlines()
    assert len(result) < 50


@requires_netCDF4
def test_repr_file_collapsed(tmp_path) -> None:
    arr_to_store = xr.DataArray(np.arange(300, dtype=np.int64), dims="test")
    arr_to_store.to_netcdf(tmp_path / "test.nc", engine="netcdf4")

    with xr.open_dataarray(tmp_path / "test.nc") as arr, xr.set_options(
        display_expand_data=False
    ):
        actual = repr(arr)
        expected = dedent(
            """\
        <xarray.DataArray (test: 300)>
        [300 values with dtype=int64]
        Dimensions without coordinates: test"""
        )

        assert actual == expected

        arr_loaded = arr.compute()
        actual = arr_loaded.__repr__()
        expected = dedent(
            """\
        <xarray.DataArray (test: 300)>
        0 1 2 3 4 5 6 7 8 9 10 11 12 ... 288 289 290 291 292 293 294 295 296 297 298 299
        Dimensions without coordinates: test"""
        )

        assert actual == expected


@pytest.mark.parametrize(
    "display_max_rows, n_vars, n_attr",
    [(50, 40, 30), (35, 40, 30), (11, 40, 30), (1, 40, 30)],
)
def test__mapping_repr(display_max_rows, n_vars, n_attr) -> None:
    long_name = "long_name"
    a = defchararray.add(long_name, np.arange(0, n_vars).astype(str))
    b = defchararray.add("attr_", np.arange(0, n_attr).astype(str))
    c = defchararray.add("coord", np.arange(0, n_vars).astype(str))
    attrs = {k: 2 for k in b}
    coords = {_c: np.array([0, 1]) for _c in c}
    data_vars = dict()
    for (v, _c) in zip(a, coords.items()):
        data_vars[v] = xr.DataArray(
            name=v,
            data=np.array([3, 4]),
            dims=[_c[0]],
            coords=dict([_c]),
        )
    ds = xr.Dataset(data_vars)
    ds.attrs = attrs

    with xr.set_options(display_max_rows=display_max_rows):

        # Parse the data_vars print and show only data_vars rows:
        summary = formatting.dataset_repr(ds).split("\n")
        summary = [v for v in summary if long_name in v]
        # The length should be less than or equal to display_max_rows:
        len_summary = len(summary)
        data_vars_print_size = min(display_max_rows, len_summary)
        assert len_summary == data_vars_print_size

        summary = formatting.data_vars_repr(ds.data_vars).split("\n")
        summary = [v for v in summary if long_name in v]
        # The length should be equal to the number of data variables
        len_summary = len(summary)
        assert len_summary == n_vars

        summary = formatting.coords_repr(ds.coords).split("\n")
        summary = [v for v in summary if "coord" in v]
        # The length should be equal to the number of data variables
        len_summary = len(summary)
        assert len_summary == n_vars

    with xr.set_options(
        display_max_rows=display_max_rows,
        display_expand_coords=False,
        display_expand_data_vars=False,
        display_expand_attrs=False,
    ):
        actual = formatting.dataset_repr(ds)
        col_width = formatting._calculate_col_width(ds.variables)
        dims_start = formatting.pretty_print("Dimensions:", col_width)
        dims_values = formatting.dim_summary_limited(
            ds, col_width=col_width + 1, max_rows=display_max_rows
        )
        expected = f"""\
<xarray.Dataset>
{dims_start}({dims_values})
Coordinates: ({n_vars})
Data variables: ({n_vars})
Attributes: ({n_attr})"""
        expected = dedent(expected)
        assert actual == expected


def test__mapping_repr_recursive() -> None:
    # GH:issue:7111

    # direct recursion
    ds = xr.Dataset({"a": ("x", [1, 2, 3])})
    ds.attrs["ds"] = ds
    formatting.dataset_repr(ds)

    # indirect recursion
    ds2 = xr.Dataset({"b": ("y", [1, 2, 3])})
    ds.attrs["ds"] = ds2
    ds2.attrs["ds"] = ds
    formatting.dataset_repr(ds2)


def test__element_formatter(n_elements: int = 100) -> None:
    expected = """\
    Dimensions without coordinates: dim_0: 3, dim_1: 3, dim_2: 3, dim_3: 3,
                                    dim_4: 3, dim_5: 3, dim_6: 3, dim_7: 3,
                                    dim_8: 3, dim_9: 3, dim_10: 3, dim_11: 3,
                                    dim_12: 3, dim_13: 3, dim_14: 3, dim_15: 3,
                                    dim_16: 3, dim_17: 3, dim_18: 3, dim_19: 3,
                                    dim_20: 3, dim_21: 3, dim_22: 3, dim_23: 3,
                                    ...
                                    dim_76: 3, dim_77: 3, dim_78: 3, dim_79: 3,
                                    dim_80: 3, dim_81: 3, dim_82: 3, dim_83: 3,
                                    dim_84: 3, dim_85: 3, dim_86: 3, dim_87: 3,
                                    dim_88: 3, dim_89: 3, dim_90: 3, dim_91: 3,
                                    dim_92: 3, dim_93: 3, dim_94: 3, dim_95: 3,
                                    dim_96: 3, dim_97: 3, dim_98: 3, dim_99: 3"""
    expected = dedent(expected)

    intro = "Dimensions without coordinates: "
    elements = [
        f"{k}: {v}" for k, v in {f"dim_{k}": 3 for k in np.arange(n_elements)}.items()
    ]
    values = xr.core.formatting._element_formatter(
        elements, col_width=len(intro), max_rows=12
    )
    actual = intro + values
    assert expected == actual


def test_lazy_array_wont_compute() -> None:
    from xarray.core.indexing import LazilyIndexedArray

    class LazilyIndexedArrayNotComputable(LazilyIndexedArray):
        def __array__(self, dtype=None):
            raise NotImplementedError("Computing this array is not possible.")

    arr = LazilyIndexedArrayNotComputable(np.array([1, 2]))
    var = xr.DataArray(arr)

    # These will crash if var.data are converted to numpy arrays:
    var.__repr__()
    var._repr_html_()
